
Linear Algebra and its Applications 363 (2003) 161–176
www.elsevier.com/locate/laa

CP rank of completely positive matrices
of order 5

Raphael Loewy a,1, Bit-Shun Tam b,∗,2

aDepartment of Mathematics, Technion, Haifa 32000, Israel
bDepartment of Mathematics, Tamkang University, Tamsui 25137, Taiwan, ROC

Received 31 October 2000; accepted 6 November 2001

Submitted by J.J. McDonald

Abstract

J.H. Drew et al. [Linear and Multilinear Algebra 37 (1994) 304] conjectured that for n � 4,
the completely positive (CP) rank of every n × n completely positive matrix is at most [n2/4].
In this paper we prove that the CP rank of a 5 × 5 completely positive matrix which has at
least one zero entry is at most 6, thus providing new supporting evidence for the conjecture.
© 2002 Elsevier Science Inc. All rights reserved.
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1. Introduction

An n × n real symmetric matrix A is called completely positive (CP) if A can
be represented as BB t for some n × m (entrywise) nonnegative matrix B, where B t

denotes the transpose of B. We write A ∈ CP, or CPn if it is necessary to indicate
the size of A. Clearly a necessary condition for A to be completely positive is that A
is nonnegative and (symmetric) positive semidefinite. Such a matrix is called doubly
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nonnegative (DNN), and we write A ∈ DNN or DNNn. For surveys on completely
positive matrices we refer the reader to [1–3] and [6, pp. 304–306].

The definition of complete positivity may be alternatively written as

A = b1bt
1 + · · · + bmbt

m, (1.1)

where bi ∈ Rn is nonnegative, i = 1, . . . , m.
The bi’s correspond to the columns of B in the original definition. We refer to this

as a rank 1 CP representation of A. The latter definition makes it clear that the set
CPn is a convex cone generated by n × n rank 1 DNN matrices. Either the rank 1 CP
representation or the original definition suggests the natural question of determining
the minimum value of m in a BB t representation (or the corresponding rank 1 repre-
sentation) of a given A ∈ CP. We denote this number by #(A), and following Ando
[1], we refer to it as the completely positive rank or simply the CP rank of A. We note
that #(A) has been previously called the “factorization index” of A by some authors
(see, for instance, [2]).

Below are the two well-known major open problems in this area:

1. Determine which doubly nonnegative matrices are completely positive.
2. Given a completely positive matrix A, estimate #(A).

Much work has been done towards these problems. In particular, in relation to
problem (2), Drew et al. [10] posed the following.

Conjecture. If A ∈ CPn, n � 4, then #(A) � [n2/4].

As evidence for the conjecture, they proved in [10, Corollary 8] that if A ∈ CPn,
n � 4, has a triangle-free graph, then #(A) � [n2/4].

Here by a graph G we mean an undirected simple graph. If A is an n × n symmet-
ric matrix, then by the graph of A, denoted by G(A), we mean as usual the graph on
vertices 1, 2, . . . , n, in which there is an edge {i, j} if and only if i /= j and aij /= 0.
We assume the reader is familiar with graph theoretic terminology, which may be
found in any standard reference. A graph is said to be triangle-free if it contains
no triangles. Note that many graphs, such as cycles, trees and bipartite graphs, are
triangle-free.

In [10, p. 309] it is also noted that for each n � 4, the upper bound [n2/4] can
be attained by #(A) if we choose an A ∈ CPn for which G(A) is complete bipartite
with the two parts as balanced as possible.

Two years later, in [9, Theorem 2] Drew and Johnson showed that the conjecture
is true for every CP matrix whose graph is a completely positive graph.

A graph G is said to be completely positive if every doubly nonnegative matrix A
for which G(A) = G is completely positive. The following complete characteriza-
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tion of completely positive graphs was achieved in a series of papers [3–5,17]. See
also [1,9] for other proofs.

Theorem A. A graph G is completely positive if and only if it does not contain an
odd cycle of length greater than 4.

More recently, Berman and Shaked-Monderer [7, Theorem 2.1] proved that the
conjecture is also true for every A ∈ CP for which the comparison matrix M(A) is
an M-matrix. In Proposition 1.5 of the same paper, they also provided three other
conditions on a symmetric nonnegative matrix A, all equivalent to M(A) being an
M-matrix.

An n × n matrix A is called an M-matrix if A can be written as αIn − P , where P
is an n × n nonnegative matrix and α � ρ(P ), the spectral radius of P. For a general
n × n matrix A, the comparison matrix of A = (aij ), denoted by M(A), is defined
by

M(A)ij =
{|aij | if i = j,

−|aij | if i /= j.

It is also worthwhile to mention the following two related results obtained in [10,
Theorems 5 and 6], which led to [10, Corollary 8] (an affirmative answer to the
conjecture for the triangle-free graph case) and also partly motivated the work of
Berman and Shaked-Monderer [7].

Theorem B. If A is a symmetric nonnegative matrix and G(A) is triangle-free, then
A is CP if and only if M(A) is an M-matrix.

Theorem C. If A is a symmetric nonnegative matrix, G(A) is connected and M(A)

is an M-matrix, then A ∈ CP and

#(A) � max
{|V (G(A))|, |E(G(A))|},

where E(G(A)) (respectively, V (G(A))) denotes the edge set (respectively, vertex
set) of G(A), and for a set S we use |S| to denote its cardinality.

In this paper we shall obtain the following main result, as new supporting evi-
dence for the conjecture.

Theorem. If A ∈ CP5 has at least one zero entry, then #(A) � 6.

Certainly, this paper (likewise, the above-mentioned papers on the conjecture)
relies on the earlier work of [8,11,15,18], etc., dealing with the cases n = 2, 3, 4. For
convenience, we collect some of the relevant results below.
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Theorem D.
(a) For n � 4, if A ∈ DNNn then A ∈ CPn, and in this case #(A) � n.
(b) If A ∈ CPn, then #(A) = rank A, whenever one of the following holds:

(i) n = 1, 2 or 3;
(ii) rank A � 2;
(iii) n = 4 and rank A = 1, 2 or 4.

If it were true that every 5 × 5 doubly nonnegative matrix was completely posi-
tive, then by applying a suitable congruence (see our Lemma 1), we could reduce a
5 × 5 completely positive matrix all of whose entries are nonzero to a doubly non-
negative, and hence a completely positive, matrix with at least one zero entry. Then
by our main theorem (and Observation 2), it would follow that the conjecture was
true for all A ∈ CP5. Unfortunately, for n � 5, it was shown by Hall [12] that not
every n × n doubly nonnegative matrix is completely positive. (For other counterex-
amples, see [1,11,14] and [5] or [10].) So we have not yet fully verified the conjecture
when n = 5.

2. Auxiliary results

Let A = (aij ) ∈ CP5. We want to prove that if A has at least one zero entry, then
#(A) � 6. Since the property of being CP and also the CP rank are both invariant
under permutation similarity, we may assume hereafter that a12 = 0.

We denote by Rn+ the set of all nonnegative vectors of Rn.
We start with any rank 1 CP representation of A, say, A = ∑m

j=1 bj bt
j , where

bj ∈ R5+, j = 1, . . . , m. Note that for each j, 1 � j � m, either the first or the
second component of bj is zero. Let �1 = {j : the second component of bj is 0}, and
let �2 = {1, 2, . . . , m}\�1. Also let A1 = ∑

j∈�1
bj bt

j and A2 = ∑
j∈�2

bj bt
j . Then

we obtain a decomposition of A:

A = A1 + A2, where Ai is CP, i = 1, 2, and the second
(respectively, first) row of A1 (respectively, A2) is zero.

(2.1)

Since the second row and column of A1 are zero, A1 is permutationally similar to
the direct sum of a 4 × 4 CP matrix and the 1 × 1 zero matrix. But the CP rank of
a 4 × 4 CP matrix is at most 4, so it follows that we have #(A1) � 4. For a similar
reason, we also have #(A2) � 4. Thus, by a simple argument we have #(A) � 8, but
this is still far from our target.

We shall make use of the following observations.
By the support of a vector x, denoted by supp(x), we mean the set of indices

associated with the nonzero components of x.

Observation 1. Let u, v ∈ Rn+. If supp(v) ⊆ supp(u), then there exist ũ, ṽ ∈ Rn+,

satisfying uut + vvt = ũũt + ṽṽt, such that supp(u) = supp(ũ), and for some per-
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mutation matrix P, the vectors P u, P ũ, P v and P ṽ can be partitioned identically
so that they have the following sign patterns:

P u =




+
·
·
·
+
+
...

+
0
...

0




, P v =




+
·
·
·
+
0
...

0
0
...

0




, P ũ =




+
·
·
·
+
+
...

+
0
...

0




, and P ṽ =




0
...

0
+
...

+
+
...

+
0
...

0




,

where the third group (in the partition) may be empty, the second group is empty if
supp(u)=supp(v), and the first group of P ṽ has at least one 0 and may contain all
0’s.

This can be done by applying a procedure, which first appeared in [13, Proof of
Lemma 16.2.1], in the context of a completely positive quadratic form for the special
case when u and v have the same support. We shall refer to it as the generalized Hall
procedure, or simply the GH procedure.

Suppose u = (u1, . . . , un)t and v = (v1, . . . , vn)t. Then for any real number θ ,
we have

uut + vvt =




u1 v1
u2 v2
...

...

un vn


 Rt

θ Rθ

[
u1 u2 · · · un

v1 v2 · · · vn

]
,

where Rθ denotes the rotation matrix[
cos θ − sin θ

sin θ cos θ

]
.

Since supp(v) ⊆ supp(u), each of the vectors (u1, v1)t, . . . , (un, vn)t is of one of the
following forms (+, +)t, (+, 0)t or (0, 0)t. The action of Rθ on these vectors is to
rotate all of them counterclockwise by the same angle θ . (In case supp(u) = supp(v),
we may also use a clockwise rotation.) We increase θ from zero gradually until it first
happens that one (or more) of the vectors of the form (+, +)t becomes one of the
forms (0, +)t. Then the resulting vectors all remain nonnegative, and vectors of the
form (+, 0)t now take the form (+, +)t. Denote the corresponding value of θ by θ0,
and let ũ = (ũ1, . . . , ũn)t and ṽ = (ṽ1, . . . , ṽn)t be the vectors given by
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Rθ0

[
u1 u2 · · · un

v1 v2 · · · vn

]
=

[
ṽ1 ṽ2 · · · ṽn

ũ1 ũ2 · · · ũn

]
.

It is easy to check that we have uut + vvt = ũũt + ṽṽt, and the vectors ũ, ṽ have the
desired sign patterns.

Observation 2. Let A ∈ CPn and let S ∈ Rn,n be such that S is invertible and
S−1 � 0. Let B = SASt. Then, if B ∈ CPn we have #(A) � #(B).

This is, of course, an obvious known observation (in which it suffices to assume
A ∈ Rn,n). It will be used several times in this paper. As in [1, Proof of Theorem 2.6]
we shall use S that describes an elementary operation, or more precisely S will have
the form S = In − aEij , where a > 0, i /= j , and Eij denotes the n × n matrix with
1 at its (i, j) position and 0 elsewhere. It is easy to see that for such S, S−1 exists
and is nonnegative.

Observation 3. Let A = (aij ) ∈ CP5 be such that a12 = 0. Consider a decomposi-
tion of A as given by (2.1). Suppose that for some i, 3 � i � 5, and some a > 0, the
matrix S = I5 − aEi2 satisfies SA2St ∈ CP5. Then SASt ∈ CP5. (If we replace Ei2
and A2, respectively, by Ei1 and A1, the assertion still holds.)

This is in fact quite obvious. The congruence we perform amounts to multiplying
row 2 by −a and adding it to row i, and doing the corresponding column operation.
This does not change A1 at all, so we have SASt = SA1St + SA2St = A1 + SA2St.
Thus, SASt is a sum of two matrices in CP5.

We shall also need the following lemmas.

Lemma 1. Let B =(bij )∈DNNn, n�2. Suppose that for some r /=s, 1 � r, s � n,

the support of row r is nonempty and is a subset of the support of row s. Then there
exists α > 0 such that for S = In − αEsr , B̃ = SBSt ∈ DNNn and has the property
that the support of its row s is a proper subset of that of the corresponding row of B.

Proof. Without loss of generality, we may assume that r = 1 and s = 2. Choose
α = min{b2j /b1j : b1j > 0}. Clearly α > 0. Straightforward calculations yield

B̃ = SBSt =




b11 b12 − αb11 b13 · · · b1n

b12 − αb11 b̃22 b23 − αb13 · · · b2n − αb1n

b13 b23 − αb13 b33 · · · b3n

...
...

...
...

b1n b2n − αb1n b3n · · · bnn


 ,

where b̃22 = b22 − αb12 − α(b12 − αb11). It is clear that B̃ is positive semidefinite,
and so we have b̃22 � 0. By our choice of α, it is also clear that the remaining entries
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of B̃ are all nonnegative. Therefore, B̃ is DNN. It remains to show that the support
of row 2 of B̃ has the desired properties. In view of our assumptions on rows 1 and
2 of the DNN matrix B, clearly the numbers b11, b21(= b12) and b22 are all positive.
The positive semidefiniteness of B also implies that we have det B[{1, 2}] � 0, and
hence b22/b12 � b12/b11. So, the minimum value α of the set {b2j /b1j : b1j > 0}
can be attained for some j /= 2. Now it should be clear that the support of row 2 of
B̃ is a proper subset of that of the corresponding row of B. �

The following lemma can be deduced from [5, Theorem 4.1]. Here we offer an
independent, self-contained proof.

Lemma 2. Let

P =




p11 p12 p13 p14
p12 p22 0 0
p13 0 p33 p34
p14 0 p34 p44




be a rank 3 DNN matrix with p12 > 0. Then #(P ) = 3.

Proof. By a known result, we have P ∈ CP4 and #(P ) � rank P = 3. We multiply
the second row of P by −p12/p22 and add it to the first row, and do the corresponding
column operation. We get the matrix

P̃ =




p11 − (p2
12/p22) 0 p13 p14

0 p22 0 0
p13 0 p33 p34
p14 0 p34 p44




which is clearly a rank 3, DNN and hence CP matrix. By Observation 2 we have
#(P ) � #(P̃ ). Since p22 > 0 (as P is positive semidefinite and p12 > 0), it follows
that P̃ [{1, 3, 4}] is a rank 2 CP matrix, so its CP rank is 2. Hence #(P̃ ) = 3, implying
#(P ) = 3. �

3. Proof of the main result

To prove our theorem, we start with the decomposition (2.1), and use Observa-
tion 3 repeatedly and systematically to obtain more 0’s in the (transformed) matrices
A1 and A2. In view of Observation 2, if we can show at the end of this process that
the transformed matrix A has CP rank 6 or less, then so does the original A.

For convenience, to avoid complications in the notation, we do not change the
names of A, A1, A2 at each transformation we perform.

We let Â1 denote the 4 × 4 matrix obtained from A1 by deleting its second row
and column (which are zero), and let Â2 denote the 4 × 4 matrix obtained from A2 by
deleting its first row and column (which are zero). Clearly, we have Â1, Â2 ∈ CP4.
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We now use Observation 3, in conjunction with Lemma 1. We work first with
A2, or more precisely Â2, and try to get as many 0’s as possible in the transformed
matrix. Denote the (i, j) entry of Â2 by âij . Note that if â11 = 0 then the first row
and column of Â2 are zero, and it follows that the second row and column of A
are zero; in which case clearly we have #(A) � 4. So, henceforth, we assume that
â11 > 0.

We may assume that Â2 has already a zero in its second row. Otherwise, apply
Lemma 1 (with r = 1 and s = 2) to get a zero there.

We consider two cases.

Case I: Suppose that â21(= â12) = 0; that is,

Â2 =




+ 0 · ·
0 · · ·
· · · ·
· · · ·


 ,

where · for an entry of a matrix means it can be zero or positive.
(Ia) Suppose â13 = â14 = 0, so

Â2 =




+ 0 0 0
0
0 A3
0


 , where A3 ∈ CP3.

Then

A =




· 0 · · ·
0 0 0 0 0
· 0 · · ·
· 0 · · ·
· 0 · · ·


 +




0 0 0 0 0
0 0 0 0 0
0 0
0 0 A3
0 0


 +




0 0 0 0 0
0 + 0 0 0
0 0
0 0 0
0 0


 .

Clearly, the sum of the first two terms is a CP matrix with CP rank � 4. So we
have #(A) � 5.

(Ib) Suppose exactly one of â13, â14 is 0. By symmetry, we may assume â13 = 0,
that is,

Â2 =




+ 0 0 +
0 · · ·
0 · · ·
+ · · +


 .

Since the support of row 1 of Â2 is included in that of its row 4, by Lemma 1 we
can use an allowable congruence that annihilates the (4, 1) and (1, 4) entries. (If it
happens that the (4, 4) entry is annihilated, then by the positive semidefiniteness of
the transformed Â2, the (4, 1) and (1, 4) entries also become zero.) So we are back
to (Ia) and in view of Observation 2 we have #(A) � 5.
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(Ic) Suppose â13 > 0 and â14 > 0; that is,

Â2 =




+ 0 + +
0 · · ·
+ · + ·
+ · · +


 .

If we also have â34 > 0, then by Lemma 1 we can use an allowable congruence to
annihilate either â31 (and â13) or â34 (and â43). If we get the 0 in the (3, 1) position,
we are back to (Ib) and we are done. So we may assume that â34 = â43 = 0; that is,

Â2 =




+ 0 + +
0 · · ·
+ · + 0
+ · 0 +


 .

We now write a rank 1 CP representation of Â2; that is, its representation as a
sum of matrices of the form xxt, where x ∈ R4+. We know we may assume that the
number of summands is � 4. Also, when we go back to A2 itself, all we need to do
is to take each such vector x and add a 0 component as the first component. In view
of the sign pattern of Â2, it is clear that if x is any such vector, then

x1x2 = 0 and x3x4 = 0. (3.1)

We divide these vectors x into two groups. The first group is composed of vectors
with positive first component, whereas the second group is composed of vectors with
zero first component. Let l denote the number of vectors in the first group. Note that
each summand in the rank 1 CP representation of A2 (corresponding to the said
representation of Â2) that comes from a vector of the second group can be removed
and added to A1. If l �2, we are done, as we know #(A1)�4. So we consider the
case l �3. In view of (3.1), the following are the possible sign patterns for vectors of
the first type:


+
0
0
0


 ,




+
0
+
0


 ,




+
0
0
+


 .

(i) (ii) (iii)

Clearly it suffices to have at most one vector with pattern (i). We claim that the same
is true for patterns (ii) and (iii). Indeed consider (ii), for example, because (iii) can
be done similarly.

By applying Observation 1 or the GH procedure (with u and v interchanged or us-
ing a clockwise rotation, if necessary), we may replace any two vectors with patterns


+
0
+
0


 ,




+
0
+
0



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(which, we may assume, are linearly independent) by two vectors with patterns


+
0
+
0


 ,




0
0
+
0


 ,

and then we can move the second vector to the second group.
Thus, we can assume that there is at most one vector with any one of the patterns

(i), (ii) or (iii). We can assume further that there is exactly one vector of each pattern,
or else l � 2 and we are done. Now we can apply the GH procedure again to


+
0
+
0


 ,




+
0
0
0




to get 


+
0
+
0


 and




0
0
+
0


 ,

and again we can move one summand to A1. Thus, the case l � 3 reduces to the case
l � 2 and we conclude that #(A) � 6.

This concludes the proof of Case I. The argument of Case I also shows that if the
(3, 1) or (4, 1) entry is zero for Â2 or for an intermediate Â2, we are also done.

Case II: Suppose that â21, â31, â41 (and hence also â22, â33, â44) are all positive.
Then we can assume â23 = 0 or â24 = 0; otherwise, apply Lemma 1 to rows 1

and 2 of Â2. By symmetry, we can assume â23 = 0. So

Â2 =




+ + + +
+ + 0 ·
+ 0 + ·
+ · · +


 .

If the entries in row 4 of Â2 are all nonzero, we apply Lemma 1 to rows 1 and 4 to
obtain a zero there. If â41 = 0 = â14, then as noted at the end of the proof of Case
I, we are done. So assume â41 > 0. Then â42 = 0 or â43 = 0. By symmetry we can
assume â42 = 0; otherwise permute rows 2 and 3, and the corresponding columns,
noting that this does not change the 0 in the (2, 3) and (3, 2) positions. So we have

Â2 =




+ + + +
+ + 0 0
+ 0 + ·
+ 0 · +


 ,
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and therefore

A2 =




0 0 0 0 0
0 + + + +
0 + + 0 0
0 + 0 + ·
0 + 0 · +


 . (3.2)

Note that the situation described by (3.2) is the only one where we have not proved
our claim. But we have the extra information that the graph G(A2) misses the edges
{3, 4} and {3, 5}. Since we might have used permutations, we can say that if we
cannot finish the proof using our work with A2 alone, then the graph G(A2) misses
at least two of the edges {3, 4}, {3, 5}, and {4, 5}.

But now we can work in a similar way with Â1. It is clear from the proof so far,
and in particular from the previous paragraph, that we get the desired result unless
the graphs G(A1) and G(A2) both miss at least two of the edges {3, 4}, {3, 5}, {4, 5},
and G(A1) contains the edges {1, 3}, {1, 4}, {1, 5}, and G(A2) contains the edges
{2, 3}, {2, 4}, and {2, 5}. Applying a suitable permutation similarity to A (and hence
also to A1 and A2 simultaneously), hereafter we may assume that A2 is given by
(3.2) and the (3, 4) entry of A1 is zero.

We have to consider two cases.
Case (a):

A1 =




+ 0 + + +
0 0 0 0 0
+ 0 + 0 0
+ 0 0 + ·
+ 0 0 · +


 .

This and (3.2) imply a12 = a34 = a35 = 0.
Consider a rank 1 CP representation of A. We divide the nonnegative vectors

that are involved in this representation into two groups. The first group consists of
vectors with positive third component, whereas the second group consists of vectors
with zero third component. Suppose that y is a vector in the first group, so y3 > 0.
Then we must have

y1y2 = 0 and y4 = y5 = 0.

The only possible sign patterns for vectors in this group are therefore


0
0
+
0
0


 ,




+
0
+
0
0


 ,




0
+
+
0
0




(i) (ii) (iii)

.

As in the proof of Case (Ic), using the GH procedure and moving certain resulting
vectors to the second group, we may assume that in the first group we have at most
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one vector of each type. If we have exactly one vector of each type, we apply the GH
procedure to


0
0
+
0
0


 ,




+
0
+
0
0




to get 


+
0
+
0
0


 and




+
0
0
0
0


 ,

and we can move the second vector to the second group. So, in any case, at the
end of this process we are left with at most two vectors in the first group, possibly
increasing the number of vectors in the second group. But the sum of rank 1 matrices
corresponding to vectors in the second group is a 5 × 5 CP matrix whose third row
and column vanish, so its CP rank is � 4. Hence #(A) � 6.

Case (b):

A1 =




+ 0 + + +
0 0 0 0 0
+ 0 + 0 +
+ 0 0 + 0
+ 0 + 0 +


 .

For simplicity, we write B = A2 and C = A1, so

B =




0 0 0 0 0
0 b22 b23 b24 b25
0 b23 b33 0 0
0 b24 0 b44 b45
0 b25 0 b45 b55


 ,

(3.3)

C =




c11 0 c13 c14 c15
0 0 0 0 0

c13 0 c33 0 c35
c14 0 0 c44 0
c15 0 c35 0 c55


 .

By (3.2), b22, b23, b24, b25, b33, b44, and b55 are all positive. We can also assume
b45 > 0, or else we have a45 = 0 (and a12 = 0, a43 = 0), so we can handle it like
Case (a).



R. Loewy, B.-S. Tam / Linear Algebra and its Applications 363 (2003) 161–176 173

If B[{2, 3, 4, 5}] and C[{1, 3, 4, 5}] are both singular, then by Lemma 2 we are
done. So we can assume that at least one of these matrices is positive definite. By
symmetry, we may assume B[{2, 3, 4, 5}] is positive definite.

We perform one additional normalization. We may apply a congruence by a diag-
onal matrix with positive diagonal entries to get

b44 = b45.

So we assume from now on that this equality holds, and as a consequence we also
have

b44 < b55.

Then one can easily see that, for any 0 � α < b44, the matrix[
b44 − α b44 − α

b44 − α b55 − α

]

is positive definite and nonnegative.
Let α and β be real indeterminates and define

B(α, β)=




b22 b23 b24 b25
b23 b33 + β 0 0
b24 0 b44 − α b44 − α

b25 0 b44 − α b55 − α


 ,

C(α, β)=




c11 c13 c14 c15
c13 c33 − β 0 c35
c14 0 c44 + α α

c15 c35 α c55 + α


 .

So B[{2, 3, 4, 5}] = B(0, 0) and C[{1, 3, 4, 5}] = C(0, 0). Define

T = {
(α, β) : α, β � 0, B(α, β), C(α, β) ∈ DNN and B(α, β) is singular

}
.

We claim that T is a nonempty set. To show this, observe that B(0, 0) is a positive
definite and nonnegative matrix, while B(b44, 0) is a nonnegative matrix which is not
positive semidefinite. Hence, there exists α0, 0 < α0 < b44, such that B(α0, 0) is a
singular DNN matrix. It is obvious that C(α0, 0) is a DNN matrix, so (α0, 0) ∈ T .
Note also that T is a bounded set.

Let T1 = {
α : α > 0 and there exists β � 0 such that (α, β) ∈ T

}
.

Remark 1. It is possible to show that if α ∈ T1 then there exists a unique β � 0
such that (α, β) ∈ T . But uniqueness is not required to continue this proof.

Now let

ϕ = sup
α∈T1

α.
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It is clear that ϕ is well defined, and in fact ϕ � α0. Let {αj } be an increasing
sequence of elements of T1 which converges to ϕ. Let {βj } be a sequence of real
numbers such that for each j, (αj , βj ) ∈ T . By choosing an appropriate subsequence
if necessary, we may assume that the sequence {βj } converges to a limit ψ . It follows
that the sequences {B(αj , βj )} and {C(αj , βj )} converge, respectively, to B(ϕ, ψ)

and C(ϕ, ψ). It is clear that B(ϕ, ψ) and C(ϕ, ψ) are DNN matrices, and B(ϕ, ψ)

is singular.
We claim that C(ϕ, ψ) is also singular. Indeed, if this is not the case, then C(ϕ, ψ)

is positive definite, and so there exists δ > 0 such that

C(ϕ, ψ + δ) =




c11 c13 c14 c15
c13 c33 − ψ − δ 0 c35
c14 0 c44 + ϕ ϕ

c15 c35 ϕ c55 + ϕ




is a nonnegative and positive definite matrix. In view of

0=det B(ϕ, ψ)

=−b23 det


b23 b24 b25

0 b44 − ϕ b44 − ϕ

0 b44 − ϕ b55 − ϕ




+(b33 + ψ) det


b22 b24 b25

b24 b44 − ϕ b44 − ϕ

b25 b44 − ϕ b55 − ϕ




=−b2
23(b44 − ϕ)(b55 − b44) + (b33 + ψ) det


b22 b24 b25

b24 b44 − ϕ b44 − ϕ

b25 b44 − ϕ b55 − ϕ


 ,

it is clear that the positive semidefinite matrix
b22 b24 b25

b24 b44 − ϕ b44 − ϕ

b25 b44 − ϕ b55 − ϕ




has a positive determinant and hence is positive definite. Then we readily see that
the matrix

B(ϕ, ψ + δ) =




b22 b23 b24 b25
b23 b33 + ψ + δ 0 0
b24 0 b44 − ϕ b44 − ϕ

b25 0 b44 − ϕ b55 − ϕ




has a positive determinant, and since it contains a positive definite principal subma-
trix of order 1 less, we conclude that B(ϕ, ψ + δ) is a nonnegative and positive def-
inite matrix. Moreover, B(b44, ψ + δ) is a nonnegative matrix which is not positive
semidefinite. It follows that there exists ε > 0 such that B(ϕ + ε, ψ + δ) is a singular
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DNN matrix, and clearly C(ϕ + ε, ψ + δ) is a DNN matrix. This contradiction to the
definition of ϕ shows that C(ϕ, ψ) is a singular matrix.

Finally, consider the following decomposition of A:

A=




0 0 0 0 0
0 b22 b23 b24 b25
0 b23 b33 + ψ 0 0
0 b24 0 b44 − ϕ b44 − ϕ

0 b25 0 b44 − ϕ b55 − ϕ




+




c11 0 c13 c14 c15
0 0 0 0 0

c13 0 c33 − ψ 0 c35
c14 0 0 c44 + ϕ ϕ

c15 0 c35 ϕ c55 + ϕ


 .

Let us denote the first and second summands by B̃ and C̃, respectively. By
Lemma 2 it is clear that #(B̃)�3. But we cannot apply Lemma 2 to C̃. Note that
c15, c35 and ϕ are all positive numbers. So, if we delete the second row and column of
C̃, then the resulting matrix Ĉ has a positive last row and column. Now we can apply
Lemma 1 (with r = 1 and s = 4) to Ĉ to obtain a 0 in its last row. After the operation,
if ĉ41 = 0, then by the argument of Case I (with C̃ and B̃ playing, respectively, the
roles of A2 and A1 there), we have #(A) � 6. On the other hand, if ĉ42 or ĉ43 = 0,
then we can apply Lemma 2 to conclude that #(C̃) � 3. But #(B̃) � 3, so we have
#(A) � 6. This completes the proof.
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